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Abstract: This paper describes how large -scale
decentralized control theory may be used to analyze
the stability of multiple cooperative robotic vehicles.
Models of cooperation are discussed from a
decentralized control system point of view. Whereas
decentralized control research in the past has
concentrated on using decentralized controllers to
partition complex physically interconnected systems,
this work uses decentralized methods to connect
otherwise independent non -touching robotic vehicles
so that they behave in a stab le, coordinated fashion.
A vector Liapunov method is used to prove stability
of two examples: the controlled motion of multiple
vehicles along a perimeter and the controlled motion
of multiple vehicles in a plane.

Keywords: Mobile robotics, Lyapunov -based
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1. INTRODUCTION

Researchers have recently begun to investigate
decentralized control techniques to control muitiple
autonomous vehicles. Chen and Luh [1] examined
decentralized control laws that drove a set of mo bile
robots into a circle formation. Similarly, Yamaguchi
studied line-formations [2] and general formations
[3], and so did Yoshida et al, [4]. Decentralized
control laws using a potential field approach to guide
vehicles away from obstacles can be found in [5-6].
Beni and Liang [7] prove the convergence of a linear
swarm of distributed autonomous vehicles into a
synchronously achievable configuration. Work by
Liu and Passino [12] addresses stability of an
asynchronous swarm in which the vehicles have
proximity sensors and use information from nearest
neighbors for positioning.

In this paper, we address the stable control of
multiple vehicles using large-scale decentralized
control techniques [8). Our goal here is to show how
a simple control law for each vehicle can guarantee
stability of the overall swarm. In prior work, we
described how to test for controllability and
observability of a large-scale system [9] as well as

some simulation and hardware tests on a ground -
based swarm [11,13]. The goal of this work is to
coordinate the behavior of a large number (10s to
100s to 1000s) of autonomous robotic vehicles
performing various tasks such as reconnaissance,
surveillance, hazardous environmental operations,
physical security, and logistics support.

Once we know that a system is structurally
observable and controllable, the next question to ask
is that of connective stability. Will the overall
system be globally asymptotically stable under
structural perturbations?  Analysis of connective
stability is based upon the concept of vector
Liapunov functions, which associates several scalar
functions with a dynamic system in such a way that
each function guarantees stability in different
portions of the state space. The objective is to prove
that there exist Liapunov functions for each of the
individual subsystems and then prove that the vector
sum of these Liapunov functions is a Liapunov
function for the entire system.

2. STABILITY OF LARGE
SCALE SYSTEMS

Suppose that the overall system is denoted by
S: x=f(1,xu) M
y =ht,x)
where x(t)e R” is the state of S (eg., X, ¥y
position, orientation, and linear and angular velocities
of all vehicles) at time te T, u(t)e R” are the
inputs (e.g., the commanded wheel velocities of all
vehicles), and y(t)e R’ are the outputs (e.g., GPS
measured X,y position of all vehicles). The fimction
[iTXxR"XR™ - R" describes the dynamics of
S, and the function & :7 xR" — R’ describes the

observations of §. We can partition the system into
N interconnected subsystems given by
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S: X =f,(r,x,,ﬁ;)--l-'_,}“";(r,'x,il),:ie {L..N}
Yi= h:(’-’x.' )+ E:,(I,X) e (2)
where x;(1)e R"™ is the state of the ith subsys!etﬁ
S; at time teR, u;(1)e R™ are the inputs to
S;, and y;(t)e R are the outputs of 8;. The
function f; :TxR™M xR™ — R™ describes the
dynamics  of S;, and the function
;} TXR"XR™ - R represents the dynamic
interaction of S; with the rest of the system S. The
function hi :TXR™ — R
observations at §;derived only from local state
function

represents

variables  of S;, and the

;;,- TR - R represents observation at
8, derived from the rest of §. The N independent
subsystems are denoted as
S;: X =/fit,x,u),
Vi =h, (I,I,)

Both local and interconnected feedback may be
added to the system with

u; = ki, yi) +ki(t, »)
where the function k; :TXx R — R™ represents
the feedback at

observations, and the function E,- TxRE 5> R™

represents the feedback at S; derived from the rest

of §. For stability analysis, we will assume that the
control function has already been chosen and the
closed loop dynamics of the system can be written as

S: x‘f =g,-(t,x,v)+§,-(t,x). ie {ls"-vN}- (5)
where the function g; :T'xR™ — R™ describes

the closed loop dynamics of S;. The closed loop
interconnection function can be written as

g:(t’x) = gi(riéilxlsazxz ,...,Z?'WIN),
ie{l,..,N}

nyXn

e {l,...N
re{ }(3)

ie {l,.. N} @

S; derived only from local

(6)

where ¢;€ B /, and the elements of the

fundamental interconnection matrix E = (?,j ) are
) L ), oceurs in (g, (¢,x,u)),
U/pg — 0, (If)q does not oceur in @;(t,x,u))p.

@)
where g e {HJ} and pe {n,}.

The structural perturbations of S are introduced
by assuming that the elements of the fundamental

interconnection ‘matrix that are oné can be replaced
by any number between zero and one, i.e.

(0], 7 =1
Y '{ 0, & =0. &

Therefore, the €lements e;; represent the strength of
coupling between the individual subsystems. A
system is connectively stable if it is stable in the
sense of Liapunov for all possible E = (ey) [8]. In
other words, if a system is connectively stable, it is

stable even if an interconnection becomes decoupled,
ie. e; =0, or if interconnection parameters are

perturbed, i.e. O<e; <1. This is potentially very

powerful, as it proves that the system will be stable if
an interconnection is lost through communication
failure.

For a possibly nonlinear system S to be
com}ectiveii' stable, there must exist a matrix

W=(WU that is an M-matrix (i.e. all leading

principal minors must be positive):

1= &, =
Y=Y ek, i#) ©
i iSif s
where K; >0, and the scalar function

v :TxR™M > R, must satisfy a Lipschitz

condition

Ivf (t.x")-v, (f..\‘:] s K;"’: = -rf‘ls
Vie T, Vx/,x'e R" ‘

Also, the constant ﬁy 20 for i # j and satisfy

Iz (t.x)< ;ZZ,IE',JQ;@_! 'lel Y(t,x)e TxR"
(11

where the time derivative of the Liapunov function is
less than the negative of the comparison function

¢f"‘f
vilt,x;)< wj'lel Y(t,x;)e TxR™ (12)

For linear systems, the matrix W is a function of
the eigenvalues of the state transition matrix.
Suppose the linear system dynamics are

(10)

" ie{l,..,N}

N
S: x-,'=AiI‘-+EejjAy 'E
J=l
. (13)

and the Liapunov function for each individual

; T /2 :
subsystem is vf(x{)= xX; Hx; where H; isa
positive definite matrix. For the system S to be
connectively stable, the following test matrix

W= (wfj ) must be an M -matrix [8]:
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where the symmetric positive definite matrix G;
satisfies  the  Liapunov  matrix = equation
ATH; + H;4; =—G;, and A, (o) and Ay, (o) are
the minimum and maximum eigenvalues of the

corresponding matrices. This same analysis can also
be performed in the discrete domain [10].

(14)

2.1 Example of a Linear
Interconnected System

As an example, let us analyze a simple lin ear one-
dimensional problem in which a chain of
interdependent vehicles is to spread out along a line
as shown in Figure 1(a). The objective is to spread
out evenly along the line using only information from
the nearest neighbor.
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Figure 1. (a) One-dimensional control problem. The
top line is the initial state. The second line is the
desired final state. Vehicles 0 and 3 are boundary
conditions. Vehicles 1 and 2 spread out along the
line by using only the position of their left and right
neighbor. (b) Control block diagram of N -vehicle
interaction problem.

Assume that the vehicle’s plant is modeled as a
simple integrator, and the commanded input is the
desired velocity of the vehicle along the line. A
feedback loop and a proportional gain K, are used

to control each vehicle’s position (see Figure 1(b)).
The dynamics of each subsystem is
Si: Xi=—Kpx; +Kpu;, iefl,..N} 1)
Yi=%

where X;is the position of the ith vehicle, u;is the
control input, and y; is the observation. Assume the
control of each vehicle is a function of the two
nearest vehicles’ observed positions, and the
boundary conditions on the first and last vehicle are 1
and 0, respectively.

ty =1+,
w =Yg +ym) i€l N-1}  (16)
Uy =N

where Y is the interaction gain between vehicles. For
this linear system, the test matrix becomes



KP -KpY 0 0
-Kpy K, -Kpy -
W= 0 —KP'Y Kp 0
: -Kpy
I 0 0 -Ky,y K,
17)

For N=2, this test matrix is an M -matrix (i.e. the
system is connectively stable) if M( 1. For N=3,

1
the system is connectively stable if M‘T For
2

N=4, the system is connectively stable if
fy| < 0.618 . Notice how the range of the interaction
gain gets smaller for larger sized systems. In fact, for
this particular example, the interaction gain range
reaches a limit of MS (0.5 for infinite numbers of

vehicles. More details on the linear interconnected
case can be found in [11] including discussion of the
stability “house” that describes the stability
boundaries of the system w.rt. ¥ and K, that can

be derived from the M -matrix in (17).

Figure 2. (a) Initial configuration of vehicles. (b)
Desired configuration.

2.2 Example of a Non-Linear
Interconnected System

Next, let us consider the problem of N vehicles
spreading out in a two-dimensional space while
staying a specified distance from their neighbors (See
Figure 2). We assume that the vehicles communicate
their position to their neighbors and that each vehicle
knows the distance that it is suppose to be from
neighboring vehicles. Is there a decentralized control
that will drive the group of vehicles to the desired
configuration?

To solve such a problem, a gradient -based control
law is proposed and a vector Liapunov technique [8]
is used to prove stability. The dynamics of the
vehicles are essentially ignored so that the vehicle

dynamics can be considered to be the control law
only.
% =%y A=l N

(18)
o = [ AT e ; :
where ¥ =[x/ y;[' € R? is the 'ith vehicle state

space vector, and i€ R is the control input. The
scalar values x; and y; are the x and y coordinates of
the ith vehicle. A Liapunov function is defined for
each vehicle that is minimized when the vehicle is a
specified distance from the other vehicles.

Vf(f;fi-): Eleq[dr} = (xs '—J-‘j)z ‘(Vf ‘_Vj)z]z

(19)
where

_ 0, jis not nearest neighbor

U= { 1,  jisnearest neighbor
and dj are the desired distances between the i and j
dg=dﬂand di;=0) The

decentralized Liapunov functions v; are a measure of
the sum of the squared errors in distance for vehicle i
with respect to all the neighboring vehicles. Since

this function is not zero at X; =0, a new state vector
f! = Yf “Y,'G is defined such that

dj o -%soff 1)
where ¥, is the final position of the ith vehicle after

the vehicles are dispersed and is considered a
constant. Then the Liapunov function for the ith
vehicle can be written as

E] % [1F;-f1r‘2('7f 4 )r (i.'o"-’)‘o)]1 &)

":(’5;') = J)~

which equals zero when ¥; =0 and is greater than

(20)

vehicles (note

zero for X; #0.

In order to minimize the ith vehicle Liapunov
function, we use a control law that is the spatial
gradient of the Liapunov function:
aV,' (f, f,' )

i
where o >0 is the control gain The time derivative
of the ith vehicle Liapunov function is given by

X ,i=1.,N (23)

———
=U; =

ey V(%) Ovi(0,X ) ov; (1, X;
‘I.’,-(I, ,_)z f(at 1)+ ;a(ﬁ ')x,=—0‘. té?‘ i
i

(24)
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where

v, ( - i

%_—429 [ -r —‘x;“z}x,—xJ)
““—‘y[ﬂ"! ;r K-, iﬁ_ijﬂ)] @)

{4 -2

Since v; <0 and it is equal to zero only at ¥; =0,

this is a valid Liapunov function and the gradient -
based control law is stable for a single vehicle.

The next step is to show that when all vehicles
use the same control law that the entire system is
stable. We assume that the Liapunov function for the
entire system can be described as a vector Liapunov
function (the sum of the individual Liapunov
functions)

<t <
v(e,%)=3 pjvj(!,xj) (26)
J=1
where p ; >0. Clearly, v20 forall ¥e R"and itis
equal to zero only if ¥=0. We want to show that

Wt,%)< 0 forall ¥e R” and it is equal to zero only
if ¥=0. The time derivative of the vector Liapunov

function is
e 1T
3v(£,x)+[av(r,x)] 3 on

e i o
Since v(t,¥) is independent of time, the first term
on the right is zero. If p; =land e; =e ; for all
i, j€ N, then the second term is

(1, ¥)=-160. _gn,- (28)
where i

ni=zF xI'x,z; (29)

Xi=[E-5) - &-3n)eR* 0o

[ ( "’-‘"l"z) W(dfﬁ‘“;f‘fhflg)]r g
@31

Since X ,-T X; is a positive semi -definite matrix,
then M; 20 for i€ {l,...,N}and ¥(t,X)<0 for all

Y€ R". The elements of this semi -definite matrix
are
{X,TX‘- )m =|ff—fpl||if—fqﬂcosep,-q (32)

where 0 ,;, is the angle between vectors
X;—Xpand X; =X, . The derivative of the vector
Liapunov is equal to zero only when X =0, which is
the same as d,-%-lf;—fjﬂz=0 or z; =0 for all

i,je{l,.,N}. This proves that the system

Liapunov function  v(t,¥) valid, and the

decentralized gradient-based control law drives the
entire system to a stable configuration.

3. CONCLUSIONS

In this paper, we mathematically described how
to determine if a cooperative robotic system is
connectively stable. We illustrated the use of this
technique on both a linear and a non -linear problem.
The control law for the linear problem has been
applied to robotic perimeter surveillance task. The
control law for the non-linear problem has been
applied to a building surveillance task. Hardware
implementation of these control algorithms is being
conducted on the vehicles depicted in Fig. 3. In
addition, high fidelity simulations using a modeling
and simulation tool at Sandia called Umbra [14] are
also ongoing as shown in Fig. 4 (details can be found

in [11]).
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Figure 3. Experimental testing of robotic
vehicles setting up a communication/navigation
network inside a building.

Figure 4. Screen shot of an Umbra high fidelity
simulation of a collective of robotic vehicles
navigating a building.
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